What is Integrated Corridor Management?
The Integrated Corridor Management (ICM) concept provides a framework for multi-modal, multi-jurisdictional coordination to deliver a safer, more reliable, and more convenient transportation system for all users and in a more cost-effective manner compared to traditional capacity expansion projects. The ICM approach is based on the notion of proactively managing and operating the regional transportation system as an integrated system rather than as individual roadway networks. As traffic volumes grow and as incidents and construction activities occur, managing the Des Moines Metro Area surface transportation system holistically will allow the DOT and other local and regional agencies to more effectively manage transportation demand using available capacity where it exists, either by leveraging capacity on adjacent or parallel networks and/or by promoting the use of transit to move greater numbers of people using less vehicles. Furthermore, the Iowa DOT desires to use ICM strategies cooperatively to proactively manage traffic under all types of traffic conditions to deliver improved levels of safety, efficiency, reliability, productively and quality of life for all users.

What Are the Potential Benefits of ICM?
Nationally, a picture of the likely benefits of ICM is beginning to emerge through model/pilot deployments, and through modeling and simulation exercises that are designed to quantify the likely impacts of ICM on a given corridor. As an example, a FHWA-sponsored study indicates that ICM strategies that promote integration among freeways, arterials, and transit systems can help balance traffic flow and enhance corridor performance; simulation models indicate benefit-to-cost ratios for combined strategies range from 7:1 to 25:1.1 Generally speaking, and depending on the strategies implemented, ICM can result in the following types of benefits:

- Minimized occurrence of traffic incidents, particularly secondary incidents,
- Reduced incident duration and its resulting adverse impacts on safety and mobility,
- Improved predictability of travel times,
- Decreased time between incident and emergency verification and posting a traveler alert to available channels,
- Enhanced alternate route information or other travel options when incidents occur or congestion forms,
- Increased use of alternative routes and modes that have available capacity to serve excess demand, and
- Reduced vehicle emissions and fuel consumption resulting from congestion.